

Commercialization Strategy – Fuel Cell Vehicles

Outline

- Technology "Road Map"
- Key Technology Objectives
- Technology Advancement Proof Points
 - -Catalyst development
 - -Understanding membrane failure
 - -Continuous Processing for cost reduction
- Demonstration fleets and field trials
- Summary

Required Elements for Commercialization

BALLARD®

FCV Commercialization

Economic Incentive

Performance

Reliability

Cost

Field Validation/Service

Freeze Start

Durability

Power Density

Cost

Technology Demonstration

Fuel Cell

Balance of Plant

Electric Drive

Fundamental Understanding

making fuel ce

BALLARD®

2

- Execute Technology "Road Map" to demonstrate a commerciallyviable fuel cell technology by 2010
- Enhance strategic relationships with key unit cell component suppliers
 - Supply based needs to be encouraged to keep spending R&D dollars and to break the price/volume paradigm
- Accelerate emerging technologies; e.g.
 - Hydrocarbon composite membranes

Technology Imperatives

- -Catalyst-loading reduction with enhanced voltage efficiencies
- Metal plate technologies

- Effective water management is essential to achieve performance and durability targets
 - Develop materials and design solutions, coupled with operational strategies that drive improved system efficiencies
- Accelerate design selection through improved "tools" and related modeling & simulation expertise
 - accelerated tests to define durability issues
- Engineered electrocatalyst layers
 - Catalyst loading reduction with improved performance; mitigation of known failure mechanisms

Key Technology Development Objectives

- Low-cost composite membranes
 - Increased ionic conductivity and x-y plane dimensional stability
 - Introduce hydrocarbon ionomers
- Low-cost, continuous GDL deployment
 - -Facilitate continuous manufacturing process development for volume and cost reduction

Achieved further improvements in three key fuel cell stack performance metrics – in a single stack design...

Freeze Start

Performed 50
 consecutive
 freeze starts from
 -25° C (90 sec)

Durability

 Demonstrated stack lifetime of more than 2,000 hours

Cost Reduction

Reduce cost by 10% over 2004 technology

...while increasing stack power density and operational flexibility by running the durability test at reduced inlet Relative Humidity

Catalyst Technology Advancements

BALLARD®

Platinum

1994

2004

Already Lab Demonstrated

>2010

8-10 mg/cm²

1.0 mg/cm²

0.3-0.5 mg/cm²

< 0.3 mg/cm²

Processes

screen printing

spraying

roll coating (knife, comma bar)

CVD nanoparticle dispersion

coating

Catalyst Structure

No catalyst support

Carbon Support Carbon Support Corrosion-free Support

Pt Metal

hand

Pt and Pt alloys

Pt and Pt alloys

Non-PGM or low Pt content alloys

making fuel cells a commercial reality

BALLARD®

- Understanding failures:
 - Accelerated tests development and mechanistic understanding

 Mitigation and design improvements

Membrane is thinning in discrete areas

Reduced physical strength – leads to rupture

Membrane Technology Advancements

BALLARD®

10

Chemistries

Perfluoroionomer Perfluoroionomer Partiallyfluorinated

Hydrocarbon?

Cost Reduction - GDE Continuous Processing

BALLARD°

11

Finished substrate

Hydrophobic treatment

GDL Catalyst Coatings (GDE)

making fuel cells

Durability as a Function of Operating Conditions

BALLARD®

12

180 kW

Mark 902 Heavy Duty Transportation

Pressure: 3 bara

Duty cycle: Medium

Dynamic

Durability: ~3,000 hr

85 kW

Mark 902 Light Duty Transportation

Pressure: 3 bara

Duty cycle: Fast

Dynamic

Durability: ~1,000 hr

4 - 21 kW

Mark9 SSL[™] Forklifts

Pressure: 2 bara

Duty cycle: Slow

Dynamic

Durability*: ~10,000 hr

* Based on limited product test data

One design ...

- same stack technology meets needs of many applications
- durability is dependent on operating conditions

How can California Help?

- Regulation is critical to drive growth in demonstration fleets CARB ZEV mandate
- Early adopters of fuel cell products state owned/run organizations
- State subsidy for "green" vehicles, during ramp to commercial volumes
- Stimulate growth and investment incentives for key component developers/suppliers
- BENEFITS: reduced urban pollution, reduced GHGs, energy reliability and diversity, contribution to sustainable energy future...

24 cities

- 4.5 million plus passengers
- Real world data

Vehicles powered by Ballard fuel cells have logged more than 2.6 million kilometers

BALLARD®

5

Residential Cogeneration: Mark 1030

Automotive: Mark 902

Materials Handling & Backup Power: Mark9 SSL™

- Execute the Technology "Road Map" to deliver fuel cell stack technology by 2010 that meets commercial targets when produced in high volume
- Accelerate the introduction of emerging technologies

Summary

- FCV commercialization will require regulation and subsidy
- FCVs must offer an economic incentive to the end-user
- Continue to leverage data from "real-life" field demonstrations
- Health and life style benefits of fuel cell technology products will be of great benefit to Californians